Appendix 3 Alternative method of factorization

This is based on the idea that the properties of a multiplicative function are strongly dictated by the values on the primes. So given multiplicative G look through known functions to find, if it exists, a multiplicative function g satisfying $g(p)=G(p)$ for all primes. Then we might think of G as a 'perturbation' of g and look for a multiplicative function f such that $G=g * f$. Note that on primes

$$
\begin{aligned}
G(p) & =(g * f)(p)=g(p) f(1)+g(1) f(p) \\
& =G(p)+f(p)
\end{aligned}
$$

since $g(p)=G(p)$. Hence $f(p)=0$ for all primes. So we can think of f being, in turn, a perturbation of the zero function, $0(n)=0$ for all n and thus f a 'small' function.

For an example consider Q_{2} (even though we already know it's factorization). Because $Q_{2}(p)=1$ and $1(p)=1$ for all primes p that we may think that $Q_{2}=1 * f$ for some 'small' function f.

Important If given F which you suspect can be written as $1 * f$ for some 'simpler' f then, by Möbius inversion, $f=\mu * F$. If further F is multiplicative then f will be also and you need only calculate the values of f on prime powers.

$$
\begin{align*}
f\left(p^{r}\right) & =\sum_{d \mid p^{r}} \mu(d) F\left(\frac{p^{r}}{d}\right)=\sum_{0 \leq k \leq r} \mu\left(p^{k}\right) F\left(p^{r-k}\right) \\
& =\sum_{0 \leq k \leq 1} \mu\left(p^{k}\right) F\left(p^{r-k}\right) \quad \text { since } \mu\left(p^{k}\right)=0 \text { for } k \geq 2, \\
& =F\left(p^{r}\right)-F\left(p^{r-1}\right), \tag{19}
\end{align*}
$$

for $r \geq 1$. We will use this often so needs to be remembered.
Since f is multiplicative we will have $f(1)=1$ and this need not be calculated. And when $r=1, f\left(p^{0}\right)=f(1)=1$ and so $f(p)=F(p)-1$.

Example 3.42 If $Q_{2}=1 * f_{2}$ describe f_{2}.

Solution The function Q_{2} is multiplicative so, by (19), we have

$$
\begin{aligned}
f_{2}\left(p^{r}\right) & =Q_{2}\left(p^{r}\right)-Q_{2}\left(p^{r-1}\right) \\
& = \begin{cases}0-0 & \text { if } r-1 \geq 2 \\
0-1 & \text { if } r-1=1 \\
1-1 & \text { if } r-1=0\end{cases} \\
& =\left\{\begin{aligned}
-1 & \text { if } r=2, \\
0 & \text { if } r \neq 2
\end{aligned}\right.
\end{aligned}
$$

Thus, writing $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$, we find that

$$
f_{2}(n)= \begin{cases}(-1)^{r} & \text { if } a_{1}=a_{2}=\ldots=a_{r}=2 \\ 0 & \text { otherwise }\end{cases}
$$

But $a_{1}=a_{2}=\ldots=a_{r}=2$ means that $n=m^{2}$ with m square-free. But m square-free means that $\mu(m)=(-1)^{r}=f_{2}(n)$. And if $n=m^{2}$ but m is not square-free then $\mu(m)=0=f_{2}(n)$. Hence

$$
f_{2}(n)= \begin{cases}\mu(m) & \text { if } n=m^{2}, \text { i.e. } n \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

We may think of f_{2} as 'small' since $f_{2}(p)=0$ for all primes p and is thus a perturbation of the 0 function, $0(n)=0$ for all n.

Notation In fact in the notes we use μ_{2} in place of f_{2}, since this better represents the definition of the function. Thus

$$
Q_{2}=1 * \mu_{2} .
$$

We can use the decomposition of Q_{2} to factor the Dirichlet series $D_{Q_{2}}(s)$.

Example 3.43

$$
\sum_{n=1}^{\infty} \frac{Q_{2}(n)}{n^{s}}=\frac{\zeta(s)}{\zeta(2 s)}
$$

for $\operatorname{Re} s>1$.

Proof

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{Q_{2}(n)}{n^{s}} & =D_{Q_{2}}(s)=D_{1 * \mu_{2}}(s) \\
& =D_{1}(s) D_{\mu_{2}}(s) \quad \text { by }(2) \\
& =\zeta(s) \sum_{n=1}^{\infty} \frac{\mu_{2}(n)}{n^{s}} \\
& =\zeta(s) \sum_{n=1}^{\infty} \frac{\mu(m)}{n^{s}} \\
& =\zeta(s) \sum_{m=m^{2}}^{\infty} \frac{\mu(m)}{m^{2 s}} \\
& =\frac{\zeta(s)}{\zeta(2 s)}
\end{aligned}
$$

And this is valid wherever the final Riemann zeta functions are all absolutely convergent, i.e. $\operatorname{Re} s>1$.

The method described in the notes turned this around; we first factor the Dirichlet Series to get the factorization of the arithmetic function.

